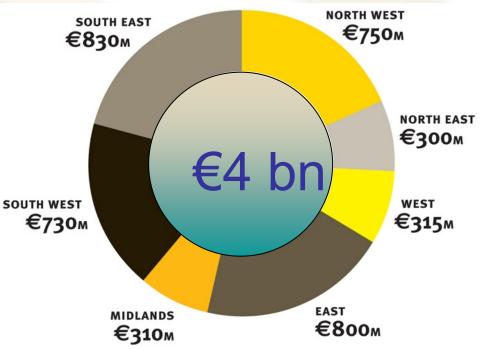

Technology Solutions to Upgrading Transmission Equipment Capacity

Enda Feeley, EirGrid


Developing the Grid - Grid25

2,300 km Upgrades

1,150 km New Build

€4 billion

Technology Solutions

Overhead Lines

- Conversion of AC circuits to DC operation
- Voltage uprate of existing transmission circuits
- Dynamic line monitoring
- High Temperature Low Sag (HTLS) conductors

Substations

- •Gas Insulated Switchgear
- Compact Switchgear
- •HTLS busbar conductors
- •FACTS Devices
- •Temperature monitoring

HTLS Requirements & Criteria

•Uprating Requirements

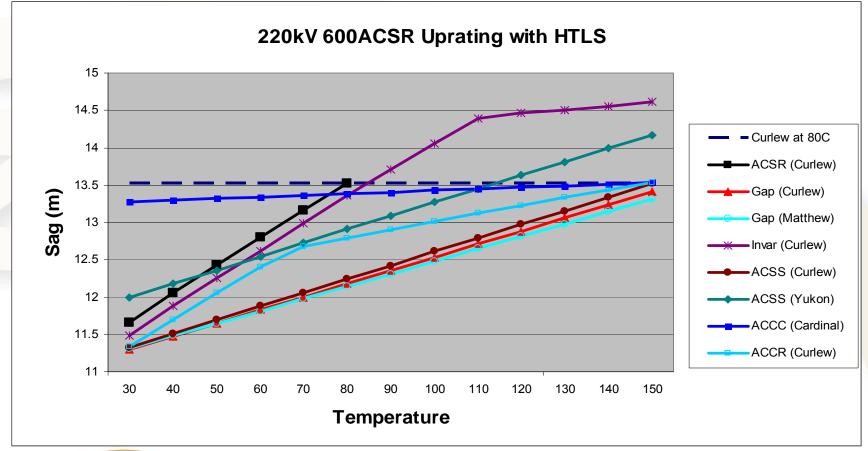
Voltage	Existing Conductor Type	Existing Rating (A/MVA)	Desired Rating (A/MVA)	Increase
110 kV	200 mm ² ACSR	107	187	75%
110 kV	300 mm ² ACSR	137	187	3 <mark>6%</mark>
22 <mark>0 k</mark> V	430 mm ² ACSR	286	605	50%
220 kV	600 mm² ACSR	431	742	50%

HTLS Conductors – Technical

5 Different Types of HTLS Conductors Considered :-

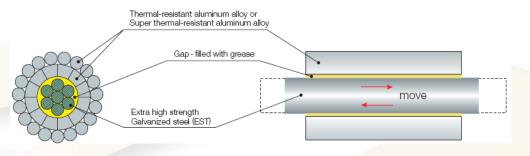
•ACSS : Aluminium Conductor, Steel Supported

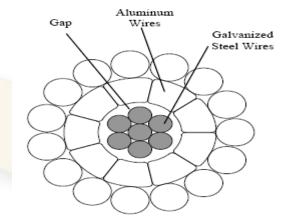
•Invar: XTACIR/ZTACIR (Iron-Nickel alloy core)


•ACCR : Aluminium Conductor Composite Reinforced

•ACCC : Aluminium Conductor Composite Core

•GAP : G(Z)TACSR




Sag / Tension Example

GAP Conductor Details

Unique Construction

•Steel core carries the load of the conductor (including aluminium)

•Combination of GAP construction and ZTAL outer wires offers excellent sag and current carrying characteristics

•Bespoke conductor designs available

GZTACSR Cross-Section

GAP Vs ACSR

•430sq.mm Conductors

- 1600A DC Current
- •160°C DC

•GAP sags 1.1m less over 40m span

Installation Process

•Non – standard installation process (2 stages)

•Stage 1. Aluminium wires are destranded, Steel core exposed, compressed and left to settle

•Stage 2. Final sag adjusted and aluminium wires re-stranded

•Similar to OPPC installation

•10 – 15% increase in stringing duration

Benefits 1/4

Increased Rating:

Voltage	Existing Conductor Type	Existing Rating (A/MVA)	GAP Uprate (A/MVA)	Increase (Summer)
110 kV	200 mm ² ACSR	562 / 107	981 / 187	75%
110 kV	300 mm ² ACSR	719 / 137	1200 / 228	65%
220 kV	430 mm ² ACSR	751 / 286	1500 / 570	100%
220 kV	600 mm ² ACSR	1131 / 431	2025 / 771	80%

Benefits 2/4

 Reduced Cost: (Note GAP costs are estimates and are subject to change depending on existing asset condition)

Voltage	Uprate Type	Standard Charge (per km)	GAP Uprate (per km)	Savings (per km)	
110 kV	200 mm ² to 430 mm ² ACSR	€259,000	€110,000	€150,000	≈ 60%
110 kV	300 mm ² to 430 mm ² ACSR	€259,000	€110,000	€150,000	<mark>≈60%</mark>
220 kV	430 mm ² ACSR plus 50% extra	€172,000	€80,000	€82,000	<mark>≈50%</mark>
220 kV	600 mm ² ACSR plus 50% extra	€700,000 (estimated)	€100,000	€600,000	≈85%

Benefits 3/4

•Electric and Magnetic Fields

•Electric Fields Unchanged

Magnetic Fields increased but within ICNIRP Guidelines

Sustainability and the Environment

- Utilising existing Assets
- •Optimising power flow along existing corridors
- Minimal Land Damage
- Land Access
 - •No new Towers
 - Minimal Landowner Interaction
 - No Planning Permission

Benefits 4/4

Reduced Outage Duration

•Stringing Time

Occasional Tower Refurbishment

•Estimated 50% reduction in duration.

Case Study 1 – Killonan - Knockraha

•220kV Line constructed in 1960s

•430mm² Bison Operated @ 60°C

•Fully Refurbished in 2006

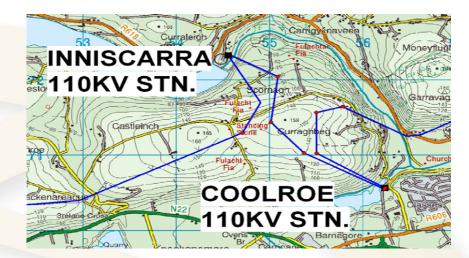
 Uprate to 430mm² @ 80°C required for 2010 (associated with Cork CCGTs)

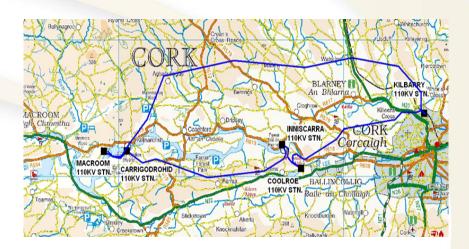
•3 Uprate Options Considered

•1: ACSR

•2: AAAC

•3: GAP (HTLS)


Case Study


Summary	430mm ² ACSR @ 80°C	AAAC Equivalent	GAP Equivalent
No of spans violated (ground clearance)	92	32	0
No of violations below 0.4m	13	14	0
% of ground clearance violations along the line	38%	13%	0%
No. of structures to be replaced or modified	79	18 + 37 IMPs	0
Summer rating (A)	943	1005	1409

Case Study 2 – Cork Loop-ins

- •Coolroe Kilbarry, Coolroe Inniscarra, Inniscarra - Macroom
- •11 recently build towers
- •25% of Towers in 8km Section
- •Cost Saving >€1m

Case Study 3 – Limerick - Moneteen

- •7km total length
- •2km double circuit section
- Construction / Planning Issues
- Cost Saving ~ €0.8m

Current Status & Next Steps

- Killonan Knockraha
 - Contract award: 2009
 - Construction: July October 2010
- Term Contract Conductor
 - Contract award: Q1 2010
- 2011 Projects
 - Cullenagh Knockraha 220kV
 - Coolroe Inniscara 110kV
 - Dunmanway Macroom 110kV
 - Corduff Ryebrook 110kV
 - Limerick Moneteen 110kV

Thank you

Questions?

