High Capacity Conductor ACCR More Amps, More Confidence

Taking on the renewable Energy challenge

for your most challenging applications

The renewable Energy challenge

Quote EirGrid 'Grid 25': "For the Grid to play its part fully, it must be developed. The bulk transmission system, comprising circuits at 220 kV or higher, represents the motorways and dual carriageways of the electricity transport system. Capacity has remained largely unchanged in the last 20 years, a period that has seen a growth of 150% in the electricity demand being carried by the system. EirGrid calculates that to facilitate the

EirGrid calculates that <u>to facilitate</u> the necessary increase in <u>renewable generation</u> and to adequately meet the demands of the electricity customer, <u>the capacity of the bulk</u> <u>transmission system will need to be doubled</u> by 2025."

Source: EirGrid

Visuals: IFHT RWTH Aachen

The renewable Energy challenge

(Design) Criteria for High Capacity Conductors

Maximizing ampacity for existing power lines

- Increased revenue
- More useable capacity improve N-1 ratings on paths
- More flexibility and responsiveness to serve unexpected load growth, new generation, upgrades on other lines
- Delay the next upgrade
- Maximize the value of your existing grid

Compatible with existing towers & structures

- Suitable for wider range of environmental conditions
 - (Heat, Cold, Ice, Wind, Corrosion)
- Installation similar to ACSR
- Good Value
- Complete Reliability for decades of service

Ampacity conditions: 35°C ambient, 0.6 m/s wind, 900 W/m² solar, emissivity 0.5, absorptivity 0.5; Ice load acc. German ice zone 1, tension 18.5 kN per conductor at-5°C plus ice; line designed for 60°C ACSR

What is 3M[™] High Capacity Conductor ACCR?

- A high voltage, overhead transmission conductor...
- ...designed as a drop-in replacement for ACSR and ACSS on existing, thermally limited lines
 - ... is installed very similar to ACSR
- ...allowing utilities to use existing structures
- ...but capable of carrying 2 to 3 times the current.

High Capacity Conductor ACCR Trusted Basic Design + High Performance Materials

Innovative High Performance Material: Metal Matrix Composite (Ceramic fiber – Aluminum) (replaces steel)

> High Performance Material ZTAL (AIZr alloy) (replaces AI resp. AIMgSi)

Compared with steel

- Comparable strength
- Lighter
- Stiffer
- Higher electrical conductivity
- Lower thermal expansion
- Chemically compatible to Aluminum

High Performance

simultaneously achievable: •Mechanically unload the towers

- •Increase clearance to terrain
- •Typically double the ampacity
- •A highly reliable, proven solution

ACCR is result of a multi-year US Dept of Energy Development Program

Partners for the development:

WIRE ROPE

Mexans

Documented Qualification

...here just the beginning of the list of reports:

Report ACCR Size Test Subject

Tensile Strength & Stress-Strain Behavior

477	Tensile Strength and Stress-Strain
795	Sustained Load Test – Conductor Only
1272	Tensile Strength and Stress-Strain
477	Rated Breaking Strength
596/TW	Tensile Strength, Stress-Strain and Resistance
477	Stress-Strain Test #2 - ORNL
795	Conductor Strength
774	46/37 River Crossing Conductor - Damper Efficiency Test
795	Stress-Strain Room Temperature
675/TW	ACA Full Tension Splice Tensile Strength
795	Tensile Production Lot
774-T53	Tensile Strength and Stress-Strain
1272	Polynomial Derivation
477	Core Mapping
	477 795 1272 477 596/TW 477 795 774 795 675/TW 795 774-T53 1272 477

Aeolian Vibration

4	N/A	WAPA Fargo Field Trial Summary
43	1272	PLP Thermolign® Suspension Assembly
73	477	PLP Thermolign® Dead End Sustained Load
76	477	PLP Thermolign® Suspension Assembly
78	596/TW	PLP Thermolign® Suspension Assembly

For more details see www.3m.com/accr:

3M ACCR		2M ACCD Installations		Application	Lu	Conduc	tor Size
				Аррисации	KV	(kcmil)	(mm²)
	001	TATA Power	Mumbai, India	Load growth Dense population	110	300	150
e e e e e e e e e e e e e e e e e e e	ë S	Xcel Energy	Minneapolis, Minnesota	Installation validation	115	477	238
Ĕ	С С	Hawaiian Electric Company	Oahu, Hawaii	Corrosive environment	46	477	238
	Sir	Western Area Power Administration	Fargo, North Dakota	Heavy ice and wind loads	230	795	418
Ο	ŝ	Bonneville Power Administration	Washington State	High temperature operation	115	675-TW	322-TW
σ	Ö	Western Area Power Administration	Phoenix, Arizona	Installation validation	230	1272	642
	С С	Salt River Project	Phoenix, Arizona	High current operation	69	795	418
	ē	Pacific Gas & Electric	Santa Clara, California	High temperature operation	115	477	238
	er	San Diego Gas & Electric	San Diego, California	EPRI test	69	795	418
	Ref	Xcel Energy	Minneapolis, Minnesota	Environmentally sensitive area River crossing	115	795	418
	с Т	Arizona Public Service	Phoenix, Arizona	Dense population Underbuilds	230	1272	642
9	nce	Western Area Power Administration	Arizona/California Border	High growth	230	795	418
	ງສ	Shanghai Electric	Shanghai, China	Cost and time savings	115	795	418
	5	Platte River Power Authority	Fort Collins, Colorado	Increased reliability	230	954	490
	ō	Aha Macav Power Services	Needles, California	Increased reliability	69	300	150
	Perf	Allegheny Power	West Virginia	Underbuilt facilities Cost and time savings	138	1033	525
S O	ц Ц	British Columbia Transmission Compa	British Columbia	River Crossing	230	788	400
	С С	Alabama Power	Birmingham, Alabama	Underbuilt facilities Load growth	230	680	346
A	Ϋ́	Silicon Valley Power	City of Santa Clara, CA	Environmental and aesthetics Reliability	60	715	365
Û	3N	<u>Chonaaina</u>	Chongqing, China	Load growth Time savings	220	680	346
Ĵ	ven	Companhia de Transmissao de Enerc	Sao Paulo, Brazil	Cost, time and environmental impact savings	138	300	150
Ĕ	Ó	Alabama Power	Birmingham, Alabama	Cost and time savings	230	1033	525
2	ቧ	<u>CPFL Piratininga</u>	Jundiai, Brasil	Load growth Cost and time savings Social impacts	88	336	171

For most recent information see: http://solutions.3m.com/wps/portal/3M/en_US/EMD_ACCR/ACCR_Home/Proven_Tech/Customer_Install/ © 3M 2010. All Rights Reserved.

(Design) Criteria for High Capacity Conductors

Maximizing ampacity for existing power lines

- Increased revenue
- More useable capacity improve N-1 ratings on paths
- More flexibility and responsiveness to serve unexpected load growth, new generation, upgrades on other lines
- Delay the next upgrade
- Maximize the value of your existing grid

Compatible with existing towers & structures

- Suitable for wider range of environmental conditions
 - (Heat, Cold, Ice, Wind, Corrosion)
- Installation similar to ACSR
- Good Value
- Complete Reliability for decades of service

Ampacity conditions: 35°C ambient, 0.6 m/s wind, 900 W/m² solar, emissivity 0.5, absorptivity 0.5; Ice load acc. German ice zone 1, tension 18.5 kN per conductor at-5°C plus ice; line designed for 60°C ACSR

Sag comparison – 110 kV – 85 MVA/Circuit

Sag comparison – Hawk ACCR – 50°C vs. 210°C

What happens within the conductor?

Attention: This is a thought experiment to highlight some effects! Effects of moderate temperature (initial case)

ACCR without mechanical load ca. 20°C ACCR with mechanical load ca. 20°C

ACCR without mechanical load ca. 60°C

<u>IF</u> it would not be stranded – this is a thought experiment ! ACCR with mechanical load ca. 60°C

Effects: higher sag, relatively more load on the core

What happens within the conductor?

Attention: This is a thought experiment to highlight some effects! Effects of high temperature (initial case)

ACCR with mechanical load ca. 20°C

ACCR without mechanical load ca. 210°C

<u>IF</u> it would not be stranded – this is a thought experiment ! ACCR with mechanical load ca. 210°C

Effects: higher sag, tension only on the core, potentially compression on the outer layers

What happens within the conductor?

Attention: This is a thought experiment to highlight some effects! (Long time) Effects of mechanical load

core

experiment !

Full Parameterized Model

- The alternative to a linear model or a bi-linear model is a full parameterized model
- The input for this model is based on the usual test of the stress strain and the creep behavior of the conductor (in our case ACCR)
- For scientific background see CIGRE paper 324 by Task Force B2.12.3 from June 2007
- The following slides show parameterized data for Hawk
 ACCR based on measured stress strain and creep data

Conductor data for a full parameterized model, Hawk ACCR

Bimetallic Conductor Model...

Aluminum has a larger thermal expansion coefficient than steel. If Aluminum is used as the outer material over a steel core there is a temperature transition point at which the aluminum is no longer under tension.

Select the behavior you want for temperatures above the transition point

- O Use behavior from Criteria/Bimetallic Conductor Model
- O Aluminum does not take compression at high temperature (Bird Cage).
- Aluminum can go into compression at high temperature.

- At = total cross section area of entire conductor (outer + inner strands)

Thermal Rating Properties	s				
Resistance at two different temperatures				Emissivity coefficient	0.5
Resistance (Ohm/km)	0.117998	at (deg	C) 25	Solar absorption coefficient	0.5
Resistance (Ohm/km)	0.141362	at (deg	C) 75	Outer strands heat capacity (Watt-s/m-deg C) 6	628.937
			L	Core heat capacity (Watt-s/m-deg C) 4	43.7008

(MPa) 68947.4

Sag-Tension Table for Hawk ACCR 477-T16

Comparing to Al/St 240/40, 400m Span

3M ACCR: lower tension, lower sag, higher ampacity

© 3M 2010. All Rights Reserved.

*) nach IEEE Std. 738-2006, 35°C, 0.6 m/s, 875 W/m², 0.5 Emissionskoeffizient und Absorptionskoeffizient

Comparing reality and theory

Sag of Hawk ACCR 477-T16 measured (with a laser) an calculated from tension values compared with prediction (based on a fully parmeterized model)*

*) see ACCR test report # 53; www.3m.com/accr

Very good fit between theory and reality

Thank You !

3M Aluminum Conductor Composite Reinforced More amps on the same size conductors, for your toughest transmission challenges

What can we do for you?

Please contact:

Dr. Jan Thomas Krapp Senior Technical Service Specialist Europe High Capacity Conductors

3M Deutschland GmbH Electrical Markets Division Laboratory Tel. +49 2131 14 3345 E-Mail jtkrapp@mmm.com

