

Harmonic Design Considerations for Wind Farms

To Ensure Grid Code Compliance

Liam Breathnach Power System Studies Group ESB International

Agenda

- Introduction
- Harmonic Theory and Concepts
- Grid Code Requirements
- Modelling and Simulation
- Case Studies
- Mitigation Measures

Introduction

- AC Power systems
 - sinusoidal voltages / currents
- Non-linear devices
 - Power electronic equipment
 - Saturable devices
- May cause distortion
- Unwanted effects on equipment and system

Introduction

Examples of Unwanted Effects:

- Conductors
 - Increased losses
- Transformer
 - Increased losses and excessive heating
- Circuit Breakers
 - Nuisance tripping
- Capacitors
 - Permanent failure

Introduction

- **Double IFCalde doubtiotion Chematrator**
 - Narhhammiconiosents
- Bychichticom giess é la tourostich Gerizentet oe svisitla i Ficel Converter
 - Narhhamicooiasents

• Harmonic currents produced by a wind turbine

Voltage Distortion: System Impedance

$$Vh = Zh^* Ih$$

• Impedances varies with frequency

$$X_{\rm L} = 2\pi fL \qquad \qquad X_{\rm C} = \frac{1}{2\pi fC}$$

- May result in harmonic voltages
- Total Harmonic Distortion (THD)

ESBI Energy Innovation

System Harmonic Impedance affected by:

- Short Circuit Level
- Capacitor banks
 - lower the resonant frequencies
- Connection
 - Cable/ Overhead Line
- Transformers/ Reactors

Grid Code Requirements

- Distortion limits outlined in IEC 61000-3-6
- High Voltage THD planning level is 3%
- Limits for individual harmonic magnitudes

Grid Code Requirements

Modelling & Simulation

- Build model
 - Represent harmonic source
 - Wind Test Report (IEC 614(
- Frequency scan analysis
 - Identify potential resonance
- Processing techniques
 - individual harmonic distortic
 - THD

WINDTEST

Laboratory accredited by DAP Deutsches Akkreditierungssystem Prüfwesen according to DN EN ISOREC 17025. This accreditation is valid für the less fand measurement procedures given in the certificate.

DAP-PL-1556.00

Excerpt of the test report "Measurement of the electrical characteristics acc. to IEC61400-21 with regard to utility interconnection of the

Page 2 of 2

Switching operations:

Case of switching operation	Start-up at cut-in wind speed				
Max. number of switching operations, N ₁₀	1				
Max. number of switching operations, N ₁₂₀	6				
Grid impedance angle	30°	50°	70°	85°	
Flicker step factor, k _f (ψ _k)	0.05	0.06	0.07	0.07	
Voitage step factor, k _u (ψ _k)	0.17	0.21	0.27	0.31	
Case of switching operation	Start-up at rated wind speed				
Max. number of switching operations, N _{sp}	1				
Max. number of switching operations, N ₁₂₀	1				
Grid impedance angle	30°	50°	70°	85°	
Flicker step factor, k _f (ψ _k)	0.09	0.08	0.06	0.06	
Voitage step factor, $k_0(\psi_k)$	0.82 0.58 0.29 0.19			0.19	

Harmonics:

Order	Output power	Harmonic current	Order	Output power	Harmonic current	Order	Output power	Harmonic current
	[kW]	[% from L]		[kW]	[% from I _e]		[kW]	[% from I ₆]
2	73	0.4	13	988.2	0.2			
3	1308.9	0.4	23	1867.3	0.2			
4	135.1	0.3	25	2318.3	0.2			
5	2134.1	2.3	45	618.7	0.2			
6	425	0.2	47	214	0.5			
7	42.8	1.0						
8	2189.1	0.1						
11	1588.4	0.4						

Maximum THD [% from rated current]	2.42
Power at maximum THD [kW]	2134.05

Exceptional details:

¹Reactive power at p_{ax} has been estimated with the existing data of reactive power (10-min-maximum-average-values), because n values at P_{ax} have been recorded.

This report is only valid in conjunction with the report

Modelling & Simulation

- Loads not producing harmonics
 - Damping
- Phase angles of sources
- Transformer connections
- Modelling of lines and cables
 - PI equivalent model (multiple sections)
- System representation
 - How far back?
 - Capacitor banks
- Short circuit capacity

R L	-
\bullet	∽-●
•	•
<u> </u>	\perp

Case Studies – Short Circuit Capacity

- High Short Circuit Level
 - Typically lower harmonics
- Lower Short Circuit Level
 - Weaker system
 - More pronounced resonance peaks

Case Studies - Cable vs Overhead Line

Case Studies – Distance Along Cable

• Point to connection important

Harmonic Mitigation

- Active Filters
 - Mitigate multiple harmonics
 - Complex and costly
- Passive Filters
 - Simple and reliable
 - Relatively inexpensive
 - Cannot mitigate multiple harmonics

Harmonic Mitigation

Summary

- Wind turbines may be source of harmonics
- May interact with system impedance
- Resulting distortion may:
 - Damage equipment
 - Increase losses
- Mitigation measures
 - May prove costly
- Identify potential issues early

